
Dynamic Control System for storing fruit at the lowest oxygen level

DCS Automatic for the best fruit quality

- C2H5OH absolute Cel 11 🛛 + O2 Cel 11

Why DCS Automatic ?

Storing fruit at the lowest O₂ level will provide the best fruit quality (source: FBR Wageningen)

Advantages of DCS automatic

- Better firmness, better shelf life compared to CA.
- DCS Automatic is an alternative for DPA
- Maximum reduction of scald, skin spots and pit rot

Advantages of DCS automatic

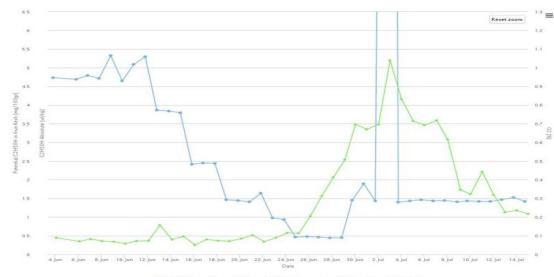
- Non chemical treatment
- Natural ripening after storage, better taste!!!
- Better appearance of the product
- **DCS[™]** represents a quality label
- Guarantees on freshness and quality can be realized on a better way.

Advantages of DCS automatic

DCS can be used as an alternative for smartfresh / or be used in combination with smartfresh.

DCS - Red Delicious

Reducing scald


- Preservering the firmness excellent
- Better taste
- Fresher appearance
- Consumers do appreciate the apples better
- DCS against age decay and flesh brown
- Possible detection of decay

How to come to lowest O_2 %?

Select a good marker for the lowest oxygen threshold were fermentation will start.

anmental Monitoring Systems EMG 8.V

Ethanol as 'the marker'

Respiration:

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy/volatiles$

Fermentation:

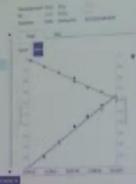
 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 + energy/volatiles$

The production of ethanol is a direct marker for the start of fermentation.

Alternative markers?

Measuring chlorophyll fluorescence:

- Per sensor only 6 fruits
- Various origins / qualities in a store needs a sensor. Will this be facilitated??
- Relation of chlorophyll stress an fermentation is questioned by researchers and practice.
- An indirect indicators for fermentation and therefore less accurate.



Alternative markers?

Respiration Quotient:

- RQ have to measured rather accurate. This is rather difficult due to varying circumstances
- In case 10% of the fruits are fermenting, the RQ will be ca. 1,03.
- In practice the RQ varies from 0,7 up to 1,8. this is not suitable for finding Low Oxygen Limit
- RQ is an indirect indicators for fermentation and therefore less accurate.

"Ethanol is the only known direct marker for fermentation"

(Jan Verschoor Senior CA researcher WUR Wageningen)

For this reason we develop the 'DCS Automatic' system for measuring the start of ethanol production by fruits during a O_2 pull down in steps.

Special features of DCS automatic:

- Accurate readings of produced ethanol in ppb
- -Automatic measurement of the O₂ level
- Daily automatic measurement

Special features of DCS automatic:

 Readings made of large batch representing the origins in the store

-Very sensitive for measuring the start of ethanol production by the most sensible fruits!!

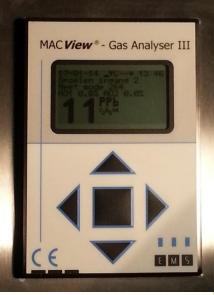
Possible indication of start of decay of fruits

How does it look like

2 pc measuring boxes

The DCS gas analyser

An I/O box



Installation of measuring boxes

Measuring box

Installation of measuring boxes

Ventilation opening

stainless steel bottom plate above opening

Membrame in grove of the PVC bottom for closing /opening

Internal ventilation system in measuring box

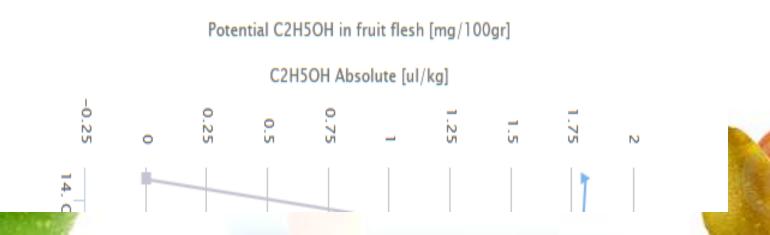
Insulation

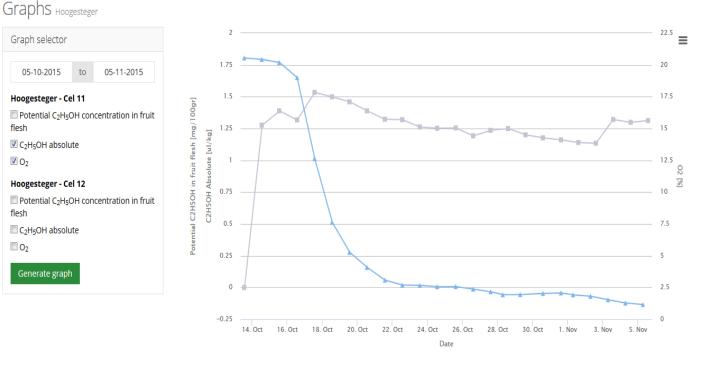
1. A sample of in total 20 kg. fruit in which different origins are equal represented in kg. is being composed and placed in the measuring box.

Important; each origin is represented on an equal level. The most susceptible fruit of an origin will start first with fermentation. This will be measured.

Because of this DCS Automatic controls the O2 level based on the most susceptible origen

How does it work


 After cooling down and the regular oxygen pull down the apples will gradually be stored at lower O₂ levels. The target value will be reduced by 0,2 or 0,1 O₂% per 5 days.


 The gas analyser is measuring each day, during a cycle of ca. 3 hours, the ethanol production of the fruit in the measuring box. The O₂ level in the CA room is also measured.

Measured ethanol is presented as; Potential ethanol in fruit flesh in mg./100 gr fruit flesh

How does it work

4. The measured ethanol production and O₂ level are are presented on URL Internet page.

- C2H5OH absolute Cel 11 + O2 Cel 11

How does it work

 The operator will maintain, reduce or increase the O₂ level in this CA store depending on the strategy and the measurement results.

The Gas analyzer is provided with:

- An ethanol senor on ppb level
- An optical O₂ senor: accuracy 0,001%!!
- Automatic measuring procedure and extensive data storage system on measuring ethanol production and O2 consumption during the measuring procedure.

The DCS Gas analyzer

Measuring procedure;

- **1.** Measuring the O2 level in the CA store
- **2.** Closing of the box
- **3.** Filtering the air in the box.
- 4. Start measuring ethanol production
- **5.** Start measuring decrease of $O_2 = O_2$ consumption by the fruit.

The DCS Gas analyzer

Important:

Each day data is collected based on none destructive measurements from the same representing sample of the contents of the CA store.

Day by day the ethanol production and O_2 consumption of the batch in the measurement box is monitored at the present O_2 level. The challenge is to detect from the weakest batch the first signals of fermentation for preventing fruit damage.

At the same time we want to know this accurate in order to store the fruit on the lowest possible O₂ levels for saving the best quality

The DCS Gas analyzer

Influencing factors:

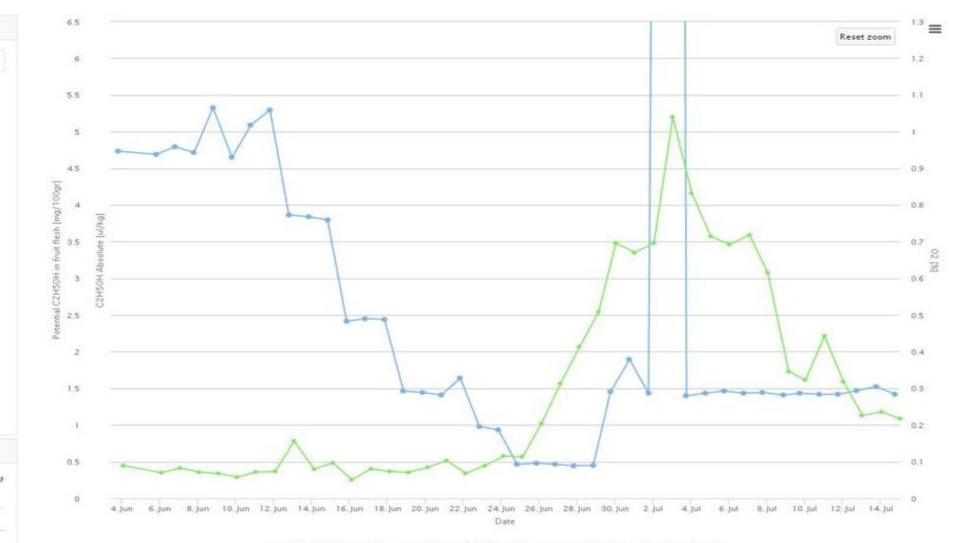
- Fruits which are showing decay (rotting) are producing ethanol and CO₂
- The variability in the quality of the fruits being stored.

Pull down procedure 1

DCS Pull Down:

After reaching 1,0 %O₂ decrease the O₂ by 0,2% to a setpoint of 0,8% O₂. Keep a waiting time of 4 days

2. Repeat this step; O_2 DECREASE THE O_2 BY 0,2% TILL 0,6% O_2 AND A WAITING TIME OF 4 DAYS


Pull down procedure 2

3. Then the decrease of O2 will will be continued by steps of 0,1% and waiting time of 4 days.

- The CO₂ can be decreased depening on the variety
- Observe the production of ethanol.

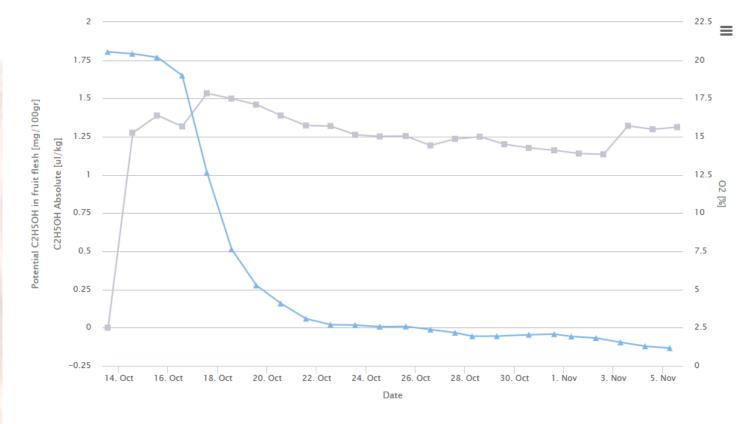
 If there is an increase of 0,5-1,0 mg ethanol/100 gr fruit/ day during 3 days, then increase the O2 level

Example ethanol production

- O2 Meetbox rechts - Potential C2HSOH concentration in fruit flesh Meetbox rechts

2nd example of fermentation

Hoogesteger, Junami, O2 reduction from 0,6%O2to 0,352%O2 caused an ethanol production increase from 2.6mg to 3 mg in 2 days. After increasing the O2 level to 0,8% the ethanol production decreased to 2.7mg.


Important feature 1

- It have to be noted that there can be a 'Ground level of ethanol production' in the sample
- This is caused by the presence of bruised fruit flesh texture or internal diseases causing decay / rotting fermentation.
- It is characterized by daily stable low production of ethanol on a level of ca. 0,1 – 1-2 mg. Ethanol/100gr fruit flesh

Example of basic production

- C2H5OH absolute Cel 11 + O2 Cel 11

Hoogesteger; Example of basic prodduction of ethanol at a level of 1,25 mg at an O2 level of 2,5% Oxygen

Example of basic production

Van Meekeren, O2 ca.1% basis production of ethanol ca. 1-1,5mg.

Important feature 2


- Detection of decay of one or more fruits in the sample.
- When a gradually slow increase of ethanol is detected of ca. 0,1-0,2 mg ethanol/100 gr. Fruit flesh/day this is an indicator for developing decay /rotting

We provide 3 examples

Example of fermentation by decay

Hoogesteger; Jonangold. Room 11, was hold on O2 level above 1%. The ethanol production increased gradually by 0,1-0,2 mg per day. In december we checked 3x a sample of over 100 fruits and found 3x time fungis in the pit.

Example of fermentation by decay

Hoogesteger Fungi in pit, followed by decay in a singel fruit.

Example of fermentation caused by decay

Example Hoogesteeger; Serious infection by fungis in clockhouse

- DCS system noticed a continuous slow increase of 1-2 mg. Ethanol per day up to 3,5 mg/100gr fruit.
- The grower did 3x a test by cutting the sample of the box and found in 10-20% of the apple fungis
- He came to the conclusion that the infection was too serious and decided to market the fruit earlier.
- (Due to weather conditions he could not spray in time during blossom time)

Example of fermentation caused by decay

Van Riel, Elstar, slow increase of ethanol by 0,1-0,2 mg./100gr per day from 0,75 mg up to 1,75 mg. On the 11th of january removal of 1 decayed fruit.

Example of fermentation by decay

Case Van Riel

Level of fermentation increased to a level of 1,8 mg. Only one apple was found which caused the ethanol production.

Example of fermentation caused by decay

Peters, Elstar, room 34 stored at 0,4%O2. Ethanol production increased gradually from 1,4 mg up to 1,8 mg. After removal of 2 decayed fruits on the 5th of january the production dropped down to ca. 0,6mg.

Example Peters; Increase of ethanol to a level of 1,8 mg.

On the 7th of january, 2 rotting fruits were detected and elimitated. The fermentation level reduced.

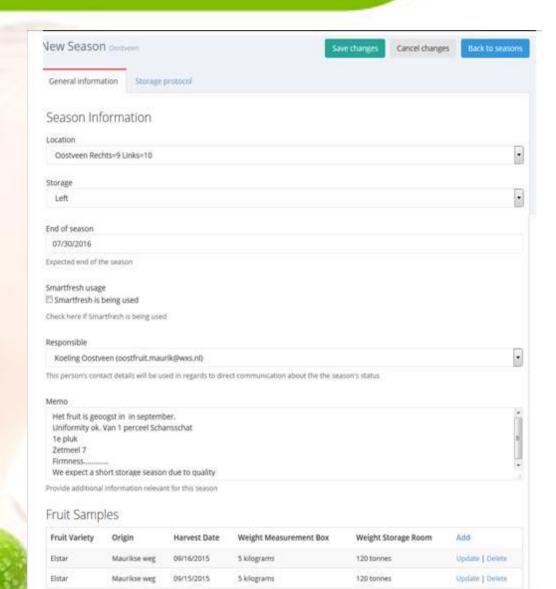
Characteristics

- The lowest O₂% will vary;
 - per origin / variety
 - per season
- The lowest O₂% can change during the storage season.
 (dynamic)
- Faster to the lowest oxygen levels (GALA)
 Within 2 weeks lower then 0,7% O2 after finishing cooling down.

Characteristics

 A daily measurement provide allows a good follow up and security.

- DCS Automatic can be used as:
 - A watchdog system
 - A dynamic system for storage at the lowest oxygen levels



DCS Portal

	EMS Portal	× C EMS P	ortal 🛛 🗙 🚺 EMS Portal	× C EMS Portal	× C EMS Portal	× C EMS Portal	×	6_6
C n D dcs.macview	v.eu/#companies	s/4/seasons						% ನೇ
Ем 5 📃								
	DCCC							
	DCS Sea	asons van Me	ekeren Farms					
npanies 🗸 🗸	Active							
	Active							
	#	Storage	Current storage rule	Rule state	Season start	Season end	Data	New
itong Science and	86	Room 21	Pull down 1.2%	62 hours to go	11/17/2015	07/31/2016	Logbook - Overview	Update - Delete
m. <			Step: 1					
			Days: 3 StartDate:11/17/2015 00:00					
			O2: 1.2% CO2: 2%					
	87	Room 22	Pull down 1.2%	62 hours to go	11/17/2015	07/31/2016	Logbook - Overview	Update - Delete
			Step: 1					
			Days: 3 StartDate:11/17/2015 00:00					
			O2: 1.296 CO2: 296					
UR <								
1000								

General Information

Information on samples

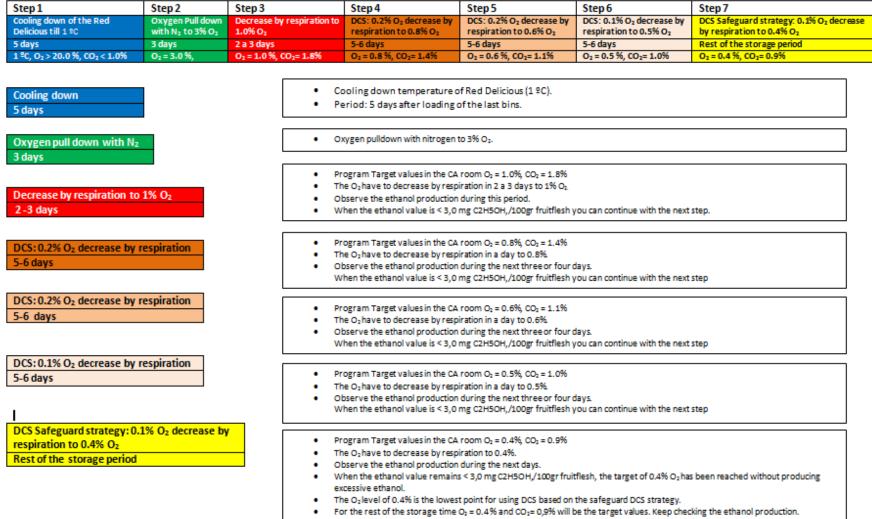
				-	4	
10/27/2015						
Expected start of t	the season	Fruit Sample				
End of season						
07/30/2016		Region		P		
Expected end of the season		Netherlands / Gen	veral			
Smartfresh usag	e	Fruit Variety				
E Smartfresh is		Elstar				
Check here if Sma	rtfresh is being used	Harvest Date				
Responsible	_	09/16/2015				
Koeling Dostv	een (oostfruit mauri					
This person's cont	tact details will be use	Origin				
		Maurikse weg				
Memo		Enter the origis where	this fruit sample is harvested			
Uniformity ok.	ogst in in septembe Van 1 perceel Schan		ment box			
te pluk Zetmeel 7		5	klograms			
Firmness	 Nort storage season (Enter the weight of thi kilograms)	s sample in the measurement box ()	n		
Provide additional	l information relevant	Contents of storage	room			
Fruit Samp	les	120	tonnes			
Fruit Variety	Origin	Enter the weight of the	s sample in the storage room (in tor	(1913	ge Room	Add
Elstar	Maurikse weg	Memo				Update Delete
Estar	Maurikse weg	Mature, good color	r. sugar content high			Update Delete
	112222000120					alesa Mesth

Storage protocol

ieral i	nformation Storage pr	otocol						
	e Protocol 🗈 New p	Protocol rule Pull down 1.2%	Pull down 1.0%	Pull down 0.9%	Pull down 0.8%	Pull down 0.7%	Pull down 0.6%	11
р		Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	St
point C	02 [%]	1.2 % O2	1 % O2	0.9 % O2	0.8 % 02	0.7 % 02	0.6 % O2	
point C	:02 [%]	2 % CO2	2 % CO2	2 % CO2	2 % CO2	2 % CO2	2 % CO2	Γ
o time	[days]	3 days	3 days	3 days	3 days	3 days	3 days	
point t	emperature [°C]	1.8 °C	1.8 °C	1.8 °C	1.8 °C	1.8 °C	1.8 °C	Γ
	nol level in fruitflesh	2 mg/100gr	2 mg/100gr	2 mg/100gr	2 mg/100gr	2 mg/100gr	2 mg/100gr	П
g/100gr bected i] moisture loss [l/100t/week]	10 l/100t/week	10 l/100t/week	10 l/100t/week	10 l/100t/week	10 l/100t/week	10 l/100t/week	
d date (set by system)	To be determined	To be determined	To be determined	To be determined	To be determined	To be determined	Tc
		Step through condition						
		Delete	Delete	Delete	Delete	Delete	Delete	
		4	Nonin South	and the second second	and the second	a and a second		

CONTROLLED ATMOSPHERE

Option for reminders


Notification	: Reminder
Date	: 11/06/2015 9:12 AM
Location	: JKB Home R&D Lab
Storage	: Left Box
Message	: WAITINGTIME STORAGE PROTOCOL RULE HAS PASSED.
	46.9 hour(s) overdue
ltem(s)	Step:3 (3th KJ pull down 0.2%)
Todo	: Goto next DCS step (4th pull down 0.2%)

Confirm now

Protocol for automatic DCS: 'Variety Red Delicious'

Carry out quality inspections according DCS manual.

Protocol for DCS automatic: ' Variety Gala'

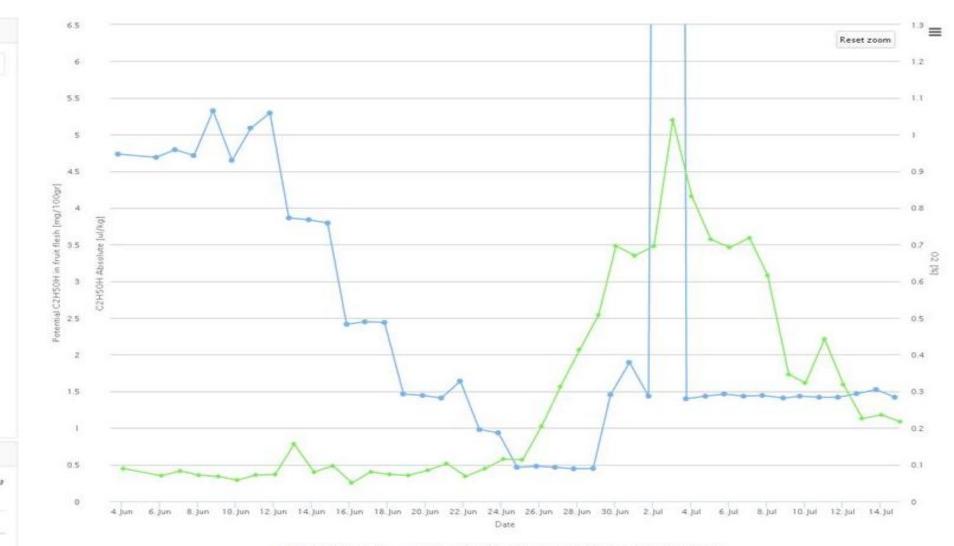
Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7
Cooling down of the Gala till 1	Oxygen Pull down	Decrease by respiration to	DCS: 0.2% O ₂ decrease by	DCS: 0.2% O2 decrease by	DCS: 0.1% O ₂ decrease by	DCS Safeguard strategy: 0.1% O ₂ decrease
90	with N ₂ to 3% O ₂	1.0% O ₂	respiration to 0.8% O ₂	respiration to 0.6% O ₂	respiration to 0.5% O ₂	by respiration to 0.4% O ₂
4 days	2-3 days	2 days	4 days	4 days	5 days	Rest of the storage period
1 ºC, O ₂ > 20.0 %, CO ₂ < 1.0%	O ₂ = 3.0 %,	O ₂ = 1.0 %, CO ₂ = 2.0%	O ₂ = 0.8 %, CO ₂ = 1.8%	O ₂ = 0.6 %, CO ₂ = 1.4%	O ₂ = 0.5 %, CO ₂ = 1.3%	O ₂ = 0.4 %, CO ₂ = 1.2%
Cooling down 5 days		• Pe	ooling down temperature o eriod: 5 days after loading	of the last bins		
Oxygen pull down with N ₂ 2-3 days			kygen pulldown with nitrogen	-		
Decrease by respiration to 2 days	1% O ₂	• Th • OI	ogram Target values O ₂ = 1.09 te O ₂ have to decrease by resp bserve the ethanol production hen the ethanol value is < 3,0	iration in 2 a 3 days to 1% O ₂	you can continue with the next	step.
DCS: 0.2% O ₂ decrease by r 4 days	respiration	• Th • OI	ogram Target values O ₂ = 0.89 e O ₂ have to decrease by resp oserve the ethanol production hen the ethanol value is < 3,0	iration in a day to 0.8%.	you can continue with the next	step.
DCS: 0.2% O ₂ decrease by r 4 days	respiration	• Th • OI	ogram Target values O ₂ = 0.69 le O ₂ have to decrease by resp pserve the ethanol production hen the ethanol value is < 3,0	iration in a day to 0.6%	you can continue with the next	step.
DCS: 0.1% O ₂ decrease by r 5 days	espiration	• Th • OI	ogram Target values O ₂ = 0.59 ie O ₂ have to decrease by resp pserve the ethanol production hen the ethanol value is < 3,0	iration in a day to 0.5%.	you can continue with the next	step.
DCS Safeguard strategy: 0. respiration to 0.4% O ₂ Rest of the storage period	1% O _z decrease by	Pr Th Ol W Th Fo Ca	e O2level of 0.4% is the lowes	iration to 0.4%. during the next days. s < 3,0 mg C2H5OH/100gr fruit t point for using DCS based on O ₂ = 0.4% and CO ₂ = 1.2% will b	a safeguard DCS strategy.	f 0.4%O2 without producing ethanol.

Temperature remains on 1ºC

Protocol for DCS Automatic: 'Variety Granny Smith'


		1				
Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7
Cooling down of the Granny	Oxygen Pull down	Decrease by respiration	DCS: 0.2% O ₂ decrease by	DCS: 0.2% O ₂ decrease by	DCS: 0.1% O ₂ decrease by	DCS Safeguard strategy: 0.1% O ₂ decrease
Smith till 1 ºC 5 days	with N ₂ to 4% O ₂ 2/3 days	to 1.0% O ₂ CO ₂ < 1.0% 2 - 3 days	respiration to 0.8% O ₂	respiration to 0.6% O ₂	respiration to 0.5% O ₂	by respiration to 0.4% O ₂ Rest of the storage period
1 °C, O ₂ > 20.0 %, CO ₂ < 1.0%	2/3 days O ₂ = 4.0 %, 1,%CO ₂	2 - 3 0ays O ₂ = 1.0 %, CO ₂ < 1.0%	5 days O ₂ = 0.8 %, CO ₂ = 1,0%	5 days O ₂ = 0.6 %. CO ₂ = 1.0%	5 days O ₂ = 0.5 %, CO ₂ = 1.0%	O ₂ = 0.4 %, CO ₂ = 0.9%
1-0, 02 > 20.0 %, 002 < 1.0%	0 ₂ = 4,0 %, 1,7000 ₂	$O_2 = 1.0 \ \%, \ OO_2 < 1.0 \ \%$	02 = 0.8 %, 002= 1,0%	02 = 0.0 %, 002= 1,0%	02 = 0.5 %, 002= 1.0%	02 = 0.4 %, 002= 0,9%
Cooling down 5 days			ooling down the temperature o eriod: 5 days after loading of th			
Oxygen pull down met N; 3 days	2	• •	xygen pulldown with nitrogen	to 4% O ₂ .		
Decrease by respiration t 5 days	o 1% O ₂	• Tİ • O	bserve the ethanol production	piration in 2 a 3 days to 1.0% O	-	
DCS: 0.2% O ₂ decrease by 5 days	respiration	• Tİ • O	rogram Target values O ₂ for the he O ₂ have to decrease by resp bserve the ethanol production /hen the ethanol value is < 3 m	piration in a day to 0.8%.	ntinue with the next step.	
DCS: 0.2% O ₂ decrease by 5 days	respiration	• Tİ • O	rogram Target values for the C he O ₂ have to decrease by resp bserve the ethanol production /hen the ethanol value is < 3 m	piration in a day to 0.6%.	ontinue with the next step.	
DCS: 0.1% O ₂ decrease by 5 days	y respiration	• Tİ • O	rogram Target values for the C he O ₂ have to decrease by resp bserve the ethanol production /hen the ethanol value is < 3 m	piration in a day to 0.5%.	ntinue with the next step.	
DCS safeguard strategy: respiration to 0.4% O ₂ DCS active strategy, furth		ν τί ο Ο Οz • W • Τί • Γί • Γί • Γί	he O2level of 0.4% is the lowes 1 case of a DCS active strategy,	siration in a day to 0.4%. during this period. s < 3 mg / 100gr fruitflesh, wet point for using DCS based onyou have to continue the sameO2 = 0.4% and CO2 = 0.9% will b	a safeguard DCS strategy. procedure to decrease the ox	thout <u>proding</u> ethanol. ygen level till the level of fermentation.

DCS Automatic Test Unit


DCS Automatic Test Unit

- 2 refrigerators containing a DCS Automatic system
- Automatic integrated O₂/CO₂ + temperature control system
- N₂ and CO₂ injection by gas from bottles.
- DCS pull down runs automatically for deterimining the Oxygen Low Limit
- Automatic storage of data

Automatic pulldown for finding the Low Oxygen Limit

- O2 Meetbox rechts - Potential C2HSOH concentration in fruit flesh Meetbox rechts

DCS Automatic Test Unit

- Stand alone determination of the fermentation level
- Specific batches can be tested from various rooms / origins
- Determined O2 levels can be applied to DCS rooms



DCS Automatic Resarch unit



This unit is equipped with an automatic filling station for gas sampling tubes for a gas chromatograph

The DCS Automatic system is tested by EMS and Wageningen University on its accuracy.

EMS analysers

The MACView®-Ethylene Postharvest Analyser can be integrated to practically every climate control system, varying from greenhouse climate computers until multi cell sampling with Ultra Low Oxygen control systems for storage.

TECHNICAL SPECIFICATIONS MACView®-Greenhouse Gas Analyser

Type of Gas Analyser	MACView [®] -Greenhouse Gas Analyser
Type of Sensors	NO (Nitric Oxide) measurement range 0-5.000 ppb
	NO ₂ (Nitrogen Dioxide) measurement range 0-5.000 ppb
	C ₂ H ₄ (Ethylene) measurement range 0-5.000 ppb
	CO (Carbon Oxide) measurement range 0-5.000 ppb
	CO ₂ (Carbon Dioxide) level 0-2.000 ppm
Resolution:	1 ppb for NO, NO ₂ , C ₂ H ₄ and 10 ppm for CO ₂
	Minimum inaccuracy $\pm 1\%$ below a level of 200 ppb
	Maximum inaccuracy $\pm 2\%$ between the 200 and 5000 ppb

Facts about DCS

- DCS and DCS Automatic are tested for many years.
- After the introduction of DCS in 1997, alternative systems are introduced under the name of DCA (Dynamic Controlled Atmosphere)
- DCS gives in comparison with the regular ULO storage systems better results.
- DCS can be used as a alternative of Smartfresh, or in combination with Smartfresh

History of DCS[™]

- DCS is developed and introduced by Wageningen UR, Food & Biobased Research, Netherlands since 1997.
- Since 1997 more than 15 years of research
- DCS Standard is applied in ca. 200 cells.
- Checking the apples on the presence of ethanol is carried out manually by a pulp analysis

History of DCS[™]

- A number of attempts to automate the DCS system has failed
- Due to the labour-intensive method, the semi DCS Automatic application is used very limited. This despite the enormous advantages
- Due to the labour-intensive DCS storage, most oxygen values are not reached as soon as possible

DCS - History

Before DCS Automatic, there was no reliable measurement for ethanol in a cold store. Why?

- Ethanol has to be measured on ppb scale
- Measuring ethanol is difficult, because of the presence of, for example, ethylene and other gasses.
- Ethanol dissolves easily in water
- Also rotting fruit produces ethanol

Because of the developed procedure with the measuring box this problems have been solved.

History of the DCS Automatic

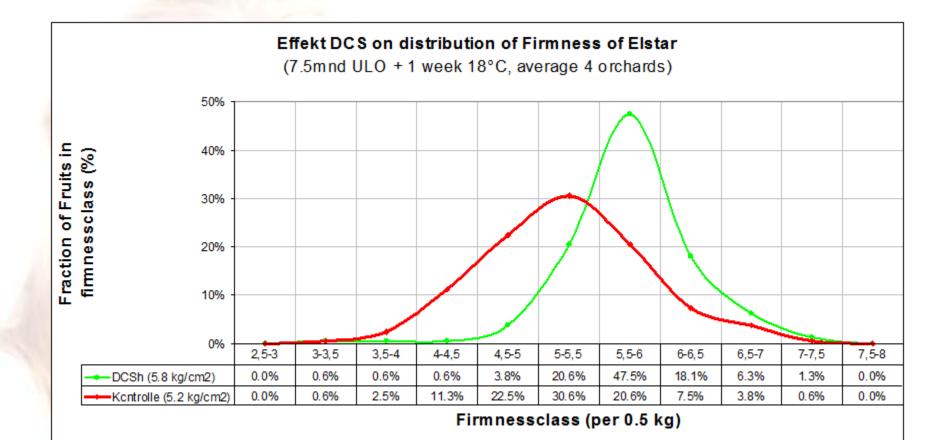
Since 2009 there is a cooperation between:

- Wageningen UR, Food & Biobased Research, Nederland
- Storex B.V.
- EMS B.V. (Manufacturer of analytic sensor technics)
- Since 2009 we have developed the DCS Automatic system, based on new modern sensor techniques
- Since 2013 the system is ready for be use

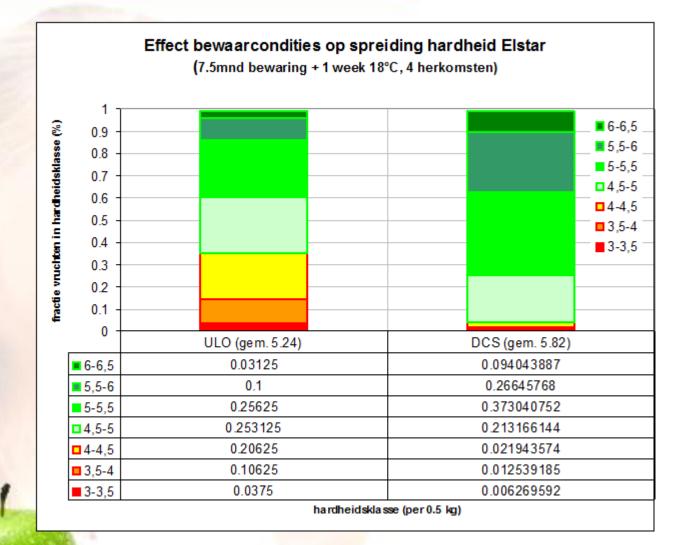
Research results

Table 2: Fruit quality of 'McIntosh' apples from Nova Scotia treated with or without SmartFresh and held in standard control atmosphere (SCA – 2.5% O2), low oxygen (LO – 1.2% O2), or dynamic control (DCS – 0.6-12% O2) for 8 months at 3°C, plus 1 and 7 days at room temperature (\sim 25°C).

	Firmness (lb)	Internal ethylene (ppm)	Soluble solids (%)	Malic acid (mg/100 ml)	Senescent breakdown (%)	Core browning (%)	Storage rots (%)
1 day at RT							
No SmartFresh							
DCS	11.9 ^C	84 ^{CD}	11.5 ^A	343 ^{BC}	0 ^F	0 ^C	3 ^{CD}
LO	12.1 ^C	84 ^{CD}	11.1 ^{AB}	366 ^{AB}	7 ^{EF}	0 ^C	0 ^D
SCA	9.7 ^E	221 ^C	11.4 ^A	380 ^A	19 ^{A-C}	1 ^C	1 ^D
+ SmartFresh							
DCS	14.1 ^A	64 ^D	11.5 ^A	359 ^{AB}	0 F	0 ^C	0 ^D
LO	13.1 ^в	79 ^{CD}	10.7 ^{BC}	377 ^A	3 ^F	0 [°]	1 ^D
SCA	11.9 ^C	158 ^{CD}	11.5 ^A	381 ^A	16 ^{B-D}	0 ^C	0 ^D
7 days at RT							
No SmartFresh							
DCS	10.7 ^D	1164 ^B	11.2 ^{AB}	339 ^{BC}	12 ^{DE}	0 ^C	9 ^{AB}
LO	10.3 ^D	1232 ^{AB}	11.2 ^{AB}	302 ^D	20 ^{AB}	0 ^C	11 ^{AB}
SCA	8.8 ^F	1221 ^{AB}	11.4 ^A	340 ^{BC}	25 ^A	11 ^A	6 ^{BC}
+ SmartFresh							
DCS	11.7 ^C	1209 ^{AB}	11.6 ^A	365 ^{AB}	13 ^{C-E}	0 ^C	9 ^B
LO	10.7 ^D	1342 ^A	10.4 ^C	323 CD	11 ^{DE}	0 ^C	16 ^A
SCA	9.2 ^F	1258 ^{AB}	11.1 ^{AB}	335 ^{BC}	16 ^{B-D}	4 ^B	6 ^{BC}
Significance	***	****	***	ગુંદ ગુંદ ગુંદ ગુંદ	****	***	***

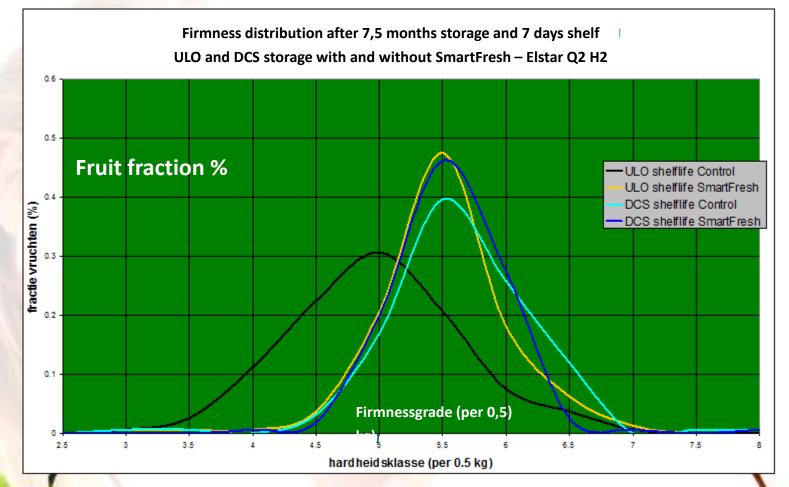

Means within the same column with the same letter are not significantly different at P < 0.05. ***, **** = significant at P < 0.001 or P < 0.0001, respectively.

Each value represents the average of 30 apples, plus another 75 for disorders on Day 7.

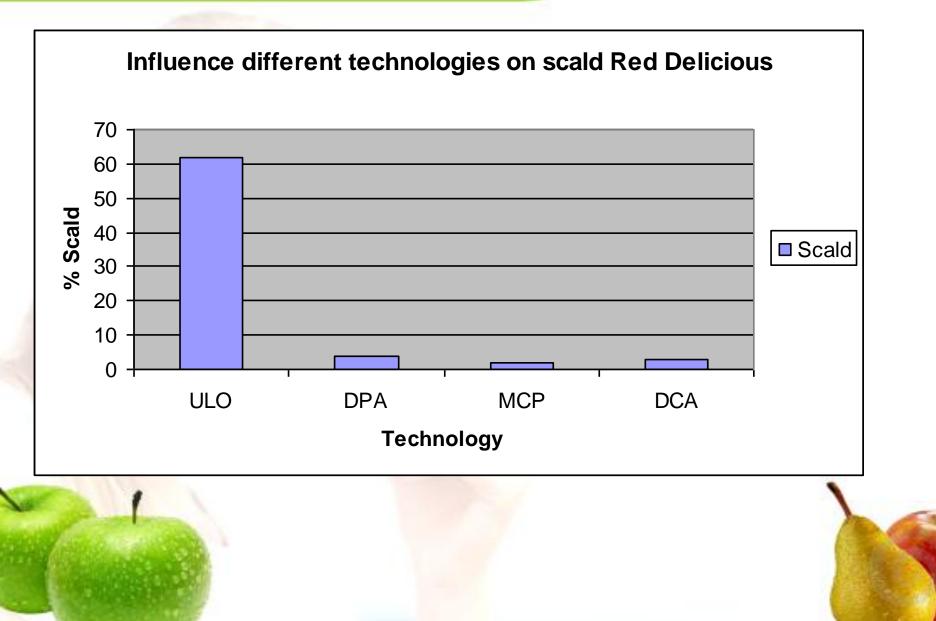

Remarkable results of research in Canada 2013/2014 with McIntosch

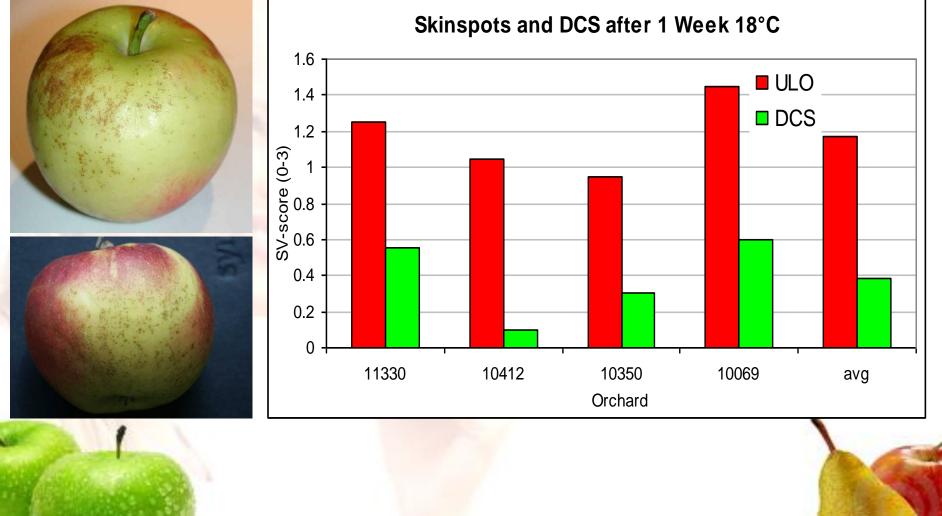
After 7 days on room temperature, apples stored with DCS maintain the same firmness as apples stored with ULO and Smartfresh.

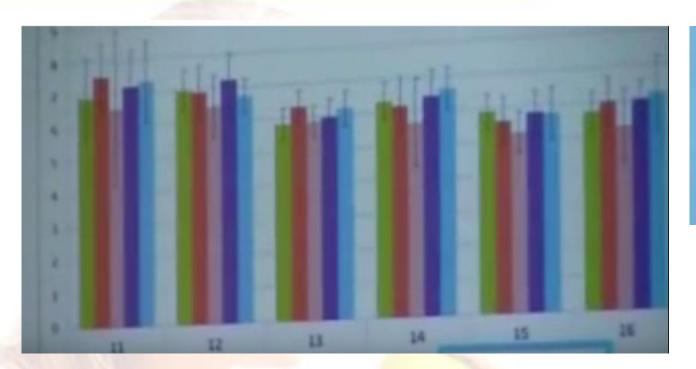
Firmness ULO versus DCS[™]



Distribution of firmness ULO versus DCS™




DCS[™] versus SmartFresh


Scald control

Reduction of skin spots

Firmness retention after DCA

(blank) - direct
geen SF na bewaring - na 1 week
geen SF na bewaring - na 2 weken
SF na bewaring - na 1 week
SF na bewaring - na 2 weken

Research carried out by FBR Wageningen and Agrofresh on DCS stored apples. A comparison between no smartfresh treatment and none smartfresh treatment after DCA storage. Result: without smartfresh treatment after DCA storage the firmness remained after 1 and 2 weeks above 5,5 kg.

Configuration

DCS ANALYZER

DCSTM components

The sample boxes

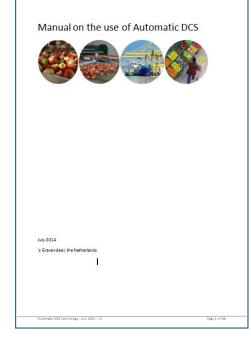
- Two pieces of solid sample boxes
- Transparant perspex lid for visual inspection and accessibility
- Sample boxes can be built into the ceiling and side wall of the cold store
- Equipped with a ventilation opening which can be closed with a membrane

DCS Automatic is now available

DCS Automatic is now available to use.
The offer in 2015 consists for each system:

- •2 pcs. of sample boxes
- The DCS ethanol measuring system
- A license-free use of the system

When you are interested, we would be happy to plan a meeting with you. During this meeting we will make the DCS system available for your company. So you can benefit of the advantages of the DCS automatic system.



Manual + guidance

Extensive manual available
Specific storage protocol available for a variety of fruit

Consultancy is optional

Thank you for your attention!

DCS Automatic: The best method for fruit storage.

Our partners :

For quality of life

MACView TECHNOLOGY

WAGENINGEN UR